Bartosz Milewski

@BartoszMilewski

Physicist, software engineer (Haskell, C++), mathematician, category 'tourist,' writer, popularizer. Author of Category Theory for Programmers.

Vrijeme pridruživanja: studeni 2008.

Tweetovi

Blokirali ste korisnika/cu @BartoszMilewski

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @BartoszMilewski

  1. 31. sij

    We have reached the terminal object in the category of lectures in the series "Programming with Categories." Here, I'm talking about my favorite topic--profunctors, ends, and coends.

    Poništi
  2. 31. sij

    Brendan talking about lax monoidal and applicative functors, profunctors, presheaves, and the Yoneda lemma.

    Poništi
  3. 30. sij

    More results from last year's Applied Category Theory School in Oxford. Emily and Mario's post on n-Cat Cafe:

    Poništi
  4. 29. sij

    David talking about monoidal categories and lax monoidal functors:

    Poništi
  5. 28. sij
    Poništi
  6. 27. sij

    David talking about monads on Set.

    Poništi
  7. 25. sij
    Poništi
  8. 23. sij

    Algebras and anamorphisms in Haskell:

    Poništi
  9. 23. sij

    Quote from my (really weird) dream: "People say that van Gogh was a unique artist. It turns out there was another van Gogh, isomorphic to the first."

    Poništi
  10. 22. sij

    Lambek's lemma and Adamek's theorem.

    Poništi
  11. 21. sij

    "the instant you do anything with the object, you must know something about its type, even in a dynamically typed language!" Couldn't have said it better myself.

    Poništi
  12. 21. sij
    Poništi
  13. 21. sij
    Prikaži ovu nit
    Poništi
  14. 21. sij
    Prikaži ovu nit
    Poništi
  15. 21. sij
    Prikaži ovu nit
    Poništi
  16. 21. sij

    An example of matrix transposition.

    Prikaži ovu nit
    Poništi
  17. 20. sij

    In sheaf theory, this is how I imagine a germ of a function:

    Poništi
  18. 17. sij

    Natural transformations and adjunctions:

    Poništi
  19. 16. sij

    More about universal constructions.

    Poništi
  20. 15. sij

    Lecture 6 about universal constructions (terminal, initial, and product) whith some Haskell at the end.

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·