Matrix representation of the "fun number triad" (that's a technical term) imaginary numbers: i^2 = -1 [0 -1] [1 0] dual numbers: e^2 = 0, e != 0 [0 1] [0 0] hyperbolic numbers: i^2 = 1, i != 1 [-1 0] [0 1]
-
Prikaži ovu nit
if you are wondering what dual numbers are useful for, i wrote up a couple things on em. here's the first: https://blog.demofox.org/2014/12/30/dual-numbers-automatic-differentiation/ … For hyperbolic numbers (also called split complex numbers, among other things), check this out: https://en.wikipedia.org/wiki/Split-complex_number#History …
0 replies
4 proslijeđena tweeta
13 korisnika označava da im se sviđa
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.