Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @AdrienDoerig
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @AdrienDoerig
-
Prikvačeni tweet
New paper out! We provide evidence that feedforward convnets (ffCNNs) cannot implement human-like global computations because of their *architecture*, and not merely because of the way they are *trained*.https://www.sciencedirect.com/science/article/pii/S0042698919302299 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
Very happy to be sharing the first preprint out of my PhD, and first first-author paper: “Flexible contextual modulation of naturalistic texture perception in peripheral vision”, with
@CoenCagli_Lab and@LeonelG_Sena https://www.biorxiv.org/content/10.1101/2020.01.24.918813v1 …. Twitter summary below: (1/10)Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
Our latest work on endophenotypes of schizophrenia is out. Where we find evidence that unaffected siblings of schizophrenia patients might compensate for their backward masking deficits.https://twitter.com/SchizBulletin/status/1219833427299635201 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
What are the best libraries for Deep RL? Something efficient but flexible. I know about Openai baselines, tf.Agents and Unity, but don't really know how they compare.
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
The 1st paper of my PhD is out today in
@NatureComms! We show that word contexts can enhance letter representations in early visual cortex With@D__Richter@MatthiasEkman, peter hagoort&@flodlan Paper: https://www.nature.com/articles/s41467-019-13996-4 … TL;DR? Let me unpack it in a few (or so) tweets
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
The brain represents multiple future outcomes simultaneously and in parallel. Cool new work by
@DeepMindAI, with single-unit recordings from mice confirming the predictions coming from AI side.https://www.nature.com/articles/s41586-019-1924-6 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
This is finally out there! I tortured my kid by putting a headcam on him for years as a toddler (not all the time, I hasten to clarify) and this is the result! With
@mcxfrank, Jess Sullivan, and@ewojcik, some of whom tortured their children similarly
https://twitter.com/PsyArXivBot/status/1217128819674570753 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
Are deep neural networks trained on object recognition tasks a good model of visual processing in the brain? In rodents the answer is no, and in primates previous results suggesting yes "should be taken with a grain of salt": https://openreview.net/pdf?id=rkxcXmtUUS …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
New preprint with
@zfountas@anilkseth & Warrick Roseboom showing biases in duration reports are predicted by salient changes in visual cortex BOLD. Relevant information for time perception arises from sensory processing, no specialised systems needed. 1/7http://biorxiv.org/content/10.1101/2020.01.09.900423v1 …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Adrien Doerig proslijedio/la je Tweet
New preprint from the lab: "Individual differences among deep neural network models." https://www.biorxiv.org/content/10.1101/2020.01.08.898288v1 … Work with
@KriegeskorteLab,@HannesMehrer, and Courtney Spoerer.#tweeprint below. 1/7Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Sorry, I mean that ffCNNs do *NOT* classify this image as a cat. It is classified as an elephant, but we still see the cat based on its global shape.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
This is the peer-reviewed version of a preprint we published a few months ago. The free, updated preprint is here:https://www.biorxiv.org/content/10.1101/744268v2.full …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
There is much more promising exploration with recurrent networks nowadays, for example by
@TimKietzmann,@KriegeskorteLab,@sabour_sara,@KohitijKar,@gkreiman,@aran_nayebi,@bill_lotter and others. Time will tell which kinds of models best approximate human computations!Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
But there are other options. For example,
@DrewLinsley,@tserre and colleagues have another great recurrent grouping and segmentation network. https://arxiv.org/abs/1811.11356Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Future work is needed to find out how to implement such computations. For example, we showed that capsule networks can explain the human global effects in crowding presented here through recurrent grouping and segmentation.https://www.biorxiv.org/content/10.1101/747394v2 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
This suggests that the ffCNN *architecture* does not allow for human-like global computations. The problem does not seem to stem only from *training*. We discuss these results and argue that recurrent grouping and segmentation seems important for human-like global computations.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Here, we use very strong global effects in visual crowding (a well-documented human psychophysical effect) to address this question. Neither AlexNet, ResNet50, nor Gheiros et al.’s shape-biased network matched human performance on these tasks.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
For example, Gheiros et al. showed that randomizing the textures in ImageNet biases ffCNNs towards using more global-shape computations. But of course there are many ways to perform global computations. Does this network implement *human-like* global computations?
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
However, it is unclear whether this limitation of ffCNNs follows from their *architecture* (i.e., a cascade of local, non-linear, feedforward operations), or if training the ffCNNs on more complex datasets could lead to more human-like computations.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
For example, Gheiros et al. and Baker et al. showed that local changes to the edges of objects or their texture changes ffCNNs classification. For example, this image is classified as a cat. Humans can still see the cat, based on its global shape.pic.twitter.com/OstEFZZXig
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Several groups have shown that ffCNNs seem to rely largely on local, rather than global features. In contrast, it has been known since the gestaltists that the global shape of objects is very important for human vision.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.