Grant Sanderson

@3blue1brown

Animated videos about math. FAQ/contact:

Vrijeme pridruživanja: listopad 2014.

Medijski sadržaj

  1. 22. pro 2019.

    But wait, there's more! A footnote with another quick explanation of the formula, and some added discussion of independence.

    Prikaži ovu nit
  2. 22. pro 2019.

    New video! Bayes' theorem, and making probability intuitive. I had fun bringing in some Kahneman and Tversky results to show where human intuition seems to jive with probability, and where it doesn't.

    Prikaži ovu nit
  3. 5. pro 2019.
    Odgovor korisniku/ci
  4. 5. pro 2019.

    Remember that video about how block collisions can compute the digits of pi? A friend, Adam Brown, just showed that the math underlying this is actually identical to the math behind a very famous quantum search algorithm (Grover's): Genuinely crazy!

  5. 5. pro 2019.

    When your company has lots of MBAs but no engineers.

    Prikaži ovu nit
  6. 1. pro 2019.
    Odgovor korisniku/ci
  7. 29. stu 2019.

    Looking for a gift for a math-lover? Say, - A tie referencing its own topology - Socks illustrating the dynamics of a pendulum. - A cuddleable constant of nature - Euler characteristic mugs 10% off at , plus free shipping for orders over $50.

    Prikaži ovu nit
  8. 23. stu 2019.
    Odgovor korisniku/ci

    Do you know who originated this problem? I just saw it in this comment:

  9. 22. stu 2019.

    I did a walk-and-talk style Q&A to (belatedly) mark passing 2^21 subscribers.

  10. 18. stu 2019.

    Check out this great explanation of PCA by Casey Li, using manim for the illustrations.

  11. 17. stu 2019.

    And here's the video itself:

    Prikaži ovu nit
  12. 8. stu 2019.
    Odgovor korisniku/ci

    Hopefully, within a month, I should have a relatively comprehensive answer for those friends. I do have this:

  13. 7. stu 2019.

    The general formula for the probability of a collision when making k choices from a collection of N possibilities looks like this.

    Prikaži ovu nit
  14. 7. stu 2019.

    You can think of the birthday paradox by asking the probability of drawing 23 people successively so that each one has a birthday not yet seen. This gives the probability of no collision, so the probability of a collision is 1 minus this.

    Prikaži ovu nit
  15. 30. lis 2019.

    Alright, your turn!

    Prikaži ovu nit
  16. 30. lis 2019.
    Prikaži ovu nit
  17. 30. lis 2019.
    Prikaži ovu nit
  18. 30. lis 2019.
    Prikaži ovu nit
  19. 30. lis 2019.
    Prikaži ovu nit
  20. 30. lis 2019.
    Prikaži ovu nit

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·